
Explaining Wide Area Data Transfer Performance
Zhengchun Liu

Argonne National Laboratory
Lemont, IL, USA

zhengchun.liu@anl.gov

Prasanna Balaprakash
Argonne National Laboratory

Lemont, IL, USA
pbalapra@anl.gov

Rajkumar Ke�imuthu
Argonne National Laboratory

Lemont, IL, USA
ke�imut@anl.gov

Ian Foster
Argonne National Lab and University of Chicago

Lemont, IL, USA
foster@anl.gov

ABSTRACT
Disk-to-disk wide-area �le transfers involve many subsystems and
tunable application parameters that pose signi�cant challenges
for bo�leneck detection, system optimization, and performance
prediction. Performance models can be used to address these chal-
lenges but have not proved generally usable because of a need for
extensive online experiments to characterize subsystems. We show
here how to overcome the need for such experiments by applying
machine learning methods to historical data to estimate parameters
for predictive models. Starting with log data for millions of Globus
transfers involving billions of �les and hundreds of petabytes, we
engineer features for endpoint CPU load, network interface card
load, and transfer characteristics; and we use these features in both
linear and nonlinear models of transfer performance, We show that
the resulting models have high explanatory power. For a represen-
tative set of 30,653 transfers over 30 heavily used source-destination
pairs (“edges”), totaling 2,053 TB in 46.6 million �les, we obtain
median absolute percentage prediction errors (MdAPE) of 7.0% and
4.6% when using distinct linear and nonlinear models per edge,
respectively; when using a single nonlinear model for all edges, we
obtain an MdAPE of 7.8%. Our work broadens understanding of
factors that in�uence �le transfer rate by clarifying relationships
between achieved transfer rates, transfer characteristics, and com-
peting load. Our predictions can be used for distributed work�ow
scheduling and optimization, and our features can also be used for
optimization and explanation.

ACM Reference format:
Zhengchun Liu, Prasanna Balaprakash, Rajkumar Ke�imuthu, and Ian Fos-
ter. 2017. Explaining Wide Area Data Transfer Performance. In Proceedings
of 26th ACM International Symposium on High-Performance Parallel and
Distributed Computing, Washington, DC, USA, June 26-30, 2017 (HPDC’17),
12 pages.
DOI: h�p://dx.doi.org/10.1145/3078597.3078605

Publication rights licensed to ACM. ACM acknowledges that this contribution was
authored or co-authored by an employee, contractor or a�liate of the United States
government. As such, the Government retains a nonexclusive, royalty-free right to
publish or reproduce this article, or to allow others to do so, for Government purposes
only.
HPDC’17, Washington, DC, USA
© 2017 Copyright held by the owner/author(s). Publication rights licensed to ACM.
978-1-4503-4699-3/17/06. . . $15.00
DOI: h�p://dx.doi.org/10.1145/3078597.3078605

1 INTRODUCTION
Many researchers have studied the performance of network archi-
tectures, storage systems, protocols, and tools for high-speed �le
transfer [15, 20, 25, 33, 36, 38]. Using a mix of experiment, modeling,
and simulation, o�en in highly controlled environments, this work
has produced a good understanding of how, in principle, to con�g-
ure hardware and so�ware systems in order to enable extremely
high-speed transfers, which can achieve close to line rates on 10
Gbps and even 100 Gbps networks [11, 23].

Yet despite these results, the actual performance achieved by
disk-to-disk transfers in practical se�ings is usually much lower
than line rates. For example, a study of more than 3.9 million Globus
transfers [8] involving more than 33 billion �les and 223 PB over a
seven-year period (2010-2016) shows an average transfer speed of
only 11.5 MB/s. (On the other hand, 52% of all bytes moved over
that period moved at >100 MB/s and 14% moved at >1 GB/s.)

With e�ort, we can o�en explain each low-performing trans-
fer, which may result from (mis)con�gurations and/or interactions
among storage devices, �le systems, CPUs, operating systems, net-
work interfaces, intermediate network devices, local and wide area
networks, �le transfer so�ware, network protocols, and competing
activities. But we have lacked an approach that could use easily
obtainable information sources to explain and improve the per-
formance of arbitrary transfers in arbitrary environments. We
believe that lightweight models are required for this purpose and
that the construction of such models will require a combination
of data-driven analysis of large collections of historical data, the
development and testing of expressive analytical models of various
aspects of transfer performance, and new data sources. Here we
report on steps toward this goal.

�is paper makes four contributions. (1) We show how to use
machine learning methods to develop data transfer performance
models using only historical data. (2) We engineer features for use
in these models, including features that characterize competing
load at source and destination endpoints. (3) We identify features
that have nonlinear impact on transfer performance, in particular
those that capture competing load. (4) We demonstrate that model
accuracy can be improved even further by using new data sources
to obtain more complete knowledge of competing load.

�e rest of the paper is organized as follows. In §2 we provide
background on the Globus service that manages the transfers con-
sidered here. In §3 we introduce a simple three-feature analytical
model that provides just an upper bound on performance, and we

HPDC’17, June 26-30, 2017, Washington, DC, USA Zhengchun Liu, Prasanna Balaprakash, Rajkumar Ke�imuthu, and Ian Foster

Storage
System

GridFTP

Network

Storage
System

GridFTP

Network

Endpoint 1 Endpoint 2

WAN

disk-to-disk

Figure 1: Structure of a Globus end-to-end �le transfer from
source (le�) to destination (right), managed by cloud service.

use this model to identify factors that impact maximum achievable
transfer rate. In §4 we analyze additional factors that a�ect transfer
rate, and we de�ne the features that we use in the data-driven
models we introduce in §5, where we describe and evaluate both
linear and nonlinear regression models. Starting from a di�erent
model for each edge, we incorporate endpoint- and edge-speci�c
features to develop one model for all edges. In §6 we review related
work, in §7 discuss the broader applicability of our work, and in §8
summarize our conclusions and brie�y discuss future work.

2 BACKGROUND ON THE GLOBUS SERVICE
�e Globus transfer service is a cloud-hosted so�ware-as-a-service
implementation of the logic required to orchestrate �le transfers
between pairs of storage systems [2] (see Figure 1). A transfer
request speci�es, among other things, a source and destination; the
�les and/or directories to be transferred; and (optionally) whether
to perform integrity checking (enabled by default) and/or to encrypt
the data (disabled by default). Globus can transfer data with either
the GridFTP or HTTP protocol; we focus here on GridFTP transfers,
since HTTP support has been added only recently. GridFTP extends
FTP with features required for speed, reliability, and security.

Globus has been running since late 2010, providing us with a con-
siderable body of transfer performance data. In the work described
here, we consider transfers through the end of 2015. �ese transfers
involved ∼26K endpoints, each running Globus Connect so�ware,
and 46K unique edges (source–destination endpoint pairs for which
at least one transfer has occurred). Figure 2 shows endpoints for
which location data are available [8].

�ese data have limitations: we know relatively li�le about the
endpoints and networks involved in many transfers and li�le or
nothing about competing load. Nevertheless, we can learn some
general features about transfer characteristics and performance, as
we show in subsequent sections.

Figure 2: Globus endpoints, grouped by number of deploy-
ments in a single location [8]. (Some endpoints geolocate
erroneously to the center of countries.)

3 A SIMPLE ANALYTICAL MODEL
We introduce a simple analytical model for themaximum achievable
end-to-end �le transfer rate for a given source and destination. We
validate this model using both experimental and historical data and
draw conclusions about the model’s accuracy.

3.1 Maximum achievable transfer rate
As shown in Figure 1, an end-to-end �le transfer engages three
subsystems: source endpoint, network, and destination endpoint.
�e maximum achievable transfer rate, Rmax , cannot be more than
the minimum of the maximum rates achievable by each subsystem:

Rmax ≤ min(DRmax ,MMmax ,DWmax), (1)
where DRmax is the maximum achievable disk read rate on the
source endpoint, MMmax is the maximum achievable memory-to-
memory transfer rate from source to destination (including the
network transfer), and DWmax is the maximum achievable disk
write rate on the destination endpoint.

To test Equation 1, we conducted data transfer experiments be-
tween ESnet testbed nodes to determine Rmax , DWmax , DRmax , and
MMmax separately. �e ESnet testbed comprises identical hardware
deployed at three DOE labs in the United States (Argonne: ANL;
Brookhaven: BNL; and Lawrence Berkeley: LBL) and at CERN in
Geneva, Switzerland. Each system features a powerful Linux server
con�gured as a data transfer node (DTN) [11], with an appropriately
con�gured high-speed storage system and 10 Gb/s network link.
We use transfers from /dev/zero to disk and from disk to /dev/null
on each DTN to measure DW and DR separately; from /dev/zero on
source to /dev/null on destination to measure MM; and from disk
on source to disk on destination to measure R. We performed at
least �ve repetitions of each experiment and selected the maximum
observed values as Rmax , DWmax , DRmax , and MMmax .

Table 1 gives our results. We see that all edges are consistent
with Equation 1.

3.2 Extending the model to other endpoints
Of the 46K unique edges in the Globus log records studied here,
36,599 had been used for only a single transfer, 16,562 for ≥10
transfers, 2,496 for ≥100 transfers, and 182 for ≥1000 transfers. We

Explaining Wide Area Data Transfer Performance HPDC’17, June 26-30, 2017, Washington, DC, USA

Table 1: Experimentally determined Rmax , DWmax (at des-
tination), DRmax (at source), and MMmax , in Gb/s, on ESnet
testbed, with minimum in each row in bold.

From To Rmax DWmax DRmax MMmax

ANL
BNL 7.843 7.843 9.302 9.412
CERN 6.250 7.080 9.302 8.989
LBL 7.547 7.767 9.302 9.302

BNL
ANL 7.407 7.619 9.302 9.524
CERN 6.780 7.080 9.302 9.091
LBL 7.339 7.767 9.302 9.412

CERN
ANL 7.080 7.619 8.696 8.989
BNL 7.143 7.843 8.696 9.091
LBL 6.349 7.767 8.696 8.791

LBL
ANL 7.407 7.619 9.302 9.412
BNL 7.143 7.843 9.302 9.412
CERN 6.557 7.080 9.302 8.889

focus in this work on the 2,496 edges with ≥100 transfers. For most
of these endpoints, we cannot get the access that would be required
to measure DRmax , DWmax , and MMmax , information that is also
not measured by the GridFTP servers. Instead, we estimate these
quantities, as we now describe.

We estimate the �rst two quantities from the historical data.
For each endpoint, we set DRmax as the maximum rate observed
among all transfers with that endpoint as source and DWmax as the
maximum rate observed among all transfers with it as destination.

We use perfSONAR [16] to estimate MMmax for some edges.
�is network performance-monitoring infrastructure is deployed
at thousands of sites worldwide, many of which are available for
open testing of network performance. Many sites that run Globus
Connect servers also have perfSONAR hosts with network perfor-
mance measurement tools connected to the same network as the
Globus Connect servers.

We grouped the 2,496 edges with 100 or more transfers by loca-
tion so that nodes at the same site are treated as equivalent. �is
grouping resulted in 469 edges with ≥100 transfers. We were able
to �nd perfSONAR hosts at the sites associated with 195 of these
edges. Some perfSONAR hosts allow anyone on the research and
education network to run third-party Iperf3 [17] tests. Of the 195
edges with perfSONAR hosts at both ends, 81 supported third-party
tests. We ran third-party tests for a period of several weeks and
collected hundreds of network performance measurements.

Four of the 81 edges on which we performed tests show Globus
transfer performance signi�cantly greater than MMmax as mea-
sured by perfSONAR. In two cases, this is because their perfSONAR
and data transfer interfaces are di�erent: the site has a single perf-
SONAR host with a 10 Gbps network interface card (NIC) but either
4 or 8 DTNs, each with a 10 Gbps NIC.

Of the remaining 77 edges, 38 show Globus transfer rates in
the interval [0.8 Rmax , 1.2Rmax] when Rmax is estimated by Equa-
tion 1. A�er accounting for the known load from other simultane-
ous Globus transfers (i.e., adding max(Ksout , Kdin): see §4.3), the
observed rate for seven more edges also falls in this interval. �us

Equation 1 works reasonably well for a total of 45 edges. Of these,
the performance of 11 is limited by disk read, 14 by network, and
20 by disk write.

For the remaining 32 edges, we see signi�cantly lower rates than
estimated by Equation 1. We thus examine the log data to see how
throughput varies with load from other (competing) Globus trans-
fers. We �rst calculate the load from competing Globus transfers
on a transfer at an endpoint—the relative endpoint external load—as
follows: We scale the rate of each competing transfer based on the
fraction of the time that it overlaps with the transfer with which
it competes, sum the scaled rate of all competing transfers (Ksout

at source and Kdin at destination), and compute the fraction of
competing transfer rate. For example, for a transfer k from end-
point srck to endpoint dstk with throughput Rk , we calculate the
relative external load of k at srck and dstk as Ksout/(Rk + Ksout) and
Kdin/(Rk + Kdin), respectively. We then de�ne the relative external
load for a transfer as the greater of the relative endpoint external
loads for the transfer at the source and destination.

Given this de�nition, we can then examine how the transfer
rate varies with the relative external load. Figure 3 shows one set
of results, plo�ing transfer rate vs. relative external load for each
transfer over four edges in the ESnet testbed. As we might expect,
the achieved transfer rate declines with the external Globus load,
showing that Equation 1 is not su�cient as a model for the end-to-
end transfer rate achieved by real transfers. Other features must
also be considered.

4 TRANSFER FEATURES
Feature engineering is a general term for methods that combine
variables to get around the unreasonably large number of variables
that are o�en available in machine learning, while still describing
the data with su�cient accuracy. Such methods are o�en the key
to understanding the complex relationships between independent
and dependent variables and to developing successful data-driven
models such as those constructed by machine learning algorithms.
Feature engineering typically uses domain knowledge to create
features that make data-driven models work [14].

Starting with measured data, feature engineering seeks to build
derived values that are informative and non-redundant. �ese fea-
tures can facilitate subsequent learning and generalization, and may
also enable be�er human interpretations. We describe here how we
generated various features from Globus transfer logs, and we study
the utility of these features through extensive experiments. We
use these features in §5 to build a data-driven model of achievable
Globus transfer performance.

Our starting point for this work is Globus log data, which provide,
for each transfer, start time (Ts), completion time (Te), total bytes
transferred, number of �les (Nf), number of directories (Nd), values
for Globus tunable parameters, source endpoint, and destination
endpoint. (�e log also tells us the number of faults associated
with a transfer, N�t . Since this number is not known in advance,
however, we use it for explanation—see Figures 9 and 12—but not
prediction.)

We then construct new features by reproducing resource load
conditions on endpoints during each transfer. We join these new
features with the log data for training and testing, giving us three

HPDC’17, June 26-30, 2017, Washington, DC, USA Zhengchun Liu, Prasanna Balaprakash, Rajkumar Ke�imuthu, and Ian Foster

0.0 0.2 0.4 0.6 0.8 1.0
Relative external load

0

200

400

600

800

1000

1200

1400

Tr
an

sf
er

 ra
te

 (M
B/

s)

max rate transfer

(a) ANL to BNL

0.0 0.2 0.4 0.6 0.8 1.0
Relative external load

0

200

400

600

800

1000

1200

1400

Tr
an

sf
er

 ra
te

 (M
B/

s)

max rate transfer

(b) CERN to BNL

0.0 0.2 0.4 0.6 0.8 1.0
Relative external load

0

200

400

600

800

1000

1200

1400

Tr
an

sf
er

 ra
te

 (M
B/

s)

max rate transfer

(c) BNL to LBL

0.0 0.2 0.4 0.6 0.8 1.0
Relative external load

0

200

400

600

800

1000

1200

1400

Tr
an

sf
er

 ra
te

 (M
B/

s)

max rate transfer

(d) CERN to ANL

Figure 3: Transfer rate vs. relative external load: ESnet.

groups of features: tunable parameters speci�ed by users, transfer
characteristics such as number and size of �les, and load mea-
surements that quantify competition for transfer resources. For
convenience, we list in Table 2 some notation used in this article.
�e various terms are introduced in the following.

4.1 Tunable parameters
�e Globus GridFTP implementation includes user-con�gurable
features that can be used to optimize transfer performance [1]. Two
that are commonly used are concurrency (C) and parallelism (P).
Concurrency involves starting C independent GridFTP processes
at the source and destination endpoints. Each of the resulting
C process pairs can then work on the transfer of a separate �le,
thus providing for concurrency at the �le system I/O, CPU core,
and network levels. In general, concurrency is good for multi-
�le transfers, since it can drive more �lesystem processes, CPU
cores, and even endpoint servers, in addition to opening more TCP
streams. Parallelism is a network-level optimization, in which data
blocks for a single �le between a process pair are distributed over
P TCP streams. Large �les over high-latency links can bene�t from
higher parallelism, for reasons noted in §6.

While C and P have signi�cant in�uence on transfer rate, ac-
curately and e�ciently tuning these parameters in a dynamically
changing network environment is challenging [4]. Furthermore,
the performance achieved by a transfer depends also on the con-
currency and parallelism associated with other transfers at the
same endpoints. For example, as shown in Figure 4, aggregate
transfer throughput �rst increases but eventually declines as total
concurrency across all transfers increases.

0 200 400 600 800 1000
Total concurrency

0.00

0.05

0.10

0.15

0.20

Ag
gr

eg
at

ed
 ra

te
 (G

B/
s) Weibull curve fitting

Raw data

(a) NERSC-DTN

0 50 100 150 200 250 300
Total concurrency

0.00

0.05

0.10

0.15

0.20

Ag
gr

eg
at

ed
 ra

te
 (G

B/
s) Weibull curve fitting

Raw data

(b) Colorado

0 200 400 600 800 1000
Total concurrency

0.00

0.05

0.10

0.15

0.20

0.25

Ag
gr

eg
at

ed
 ra

te
 (G

B/
s) Weibull curve fitting

Raw data

(c) JLAB

0 50 100 150 200 250
Total concurrency

0.00
0.25
0.50
0.75
1.00
1.25
1.50
1.75

Ag
gr

eg
at

ed
 ra

te
 (G

B/
s) Weibull curve fitting

Raw data

(d) UCAR

Figure 4: Aggregate incoming transfer rate vs. total con-
currency (i.e., instantaneous number of GridFTP server in-
stances) at four endpoints, with Weibull curve [37] �tted.

4.2 Transfer characteristics
�e total number of bytes in a transfer and the average �le size
have a signi�cant impact on the transfer rate. Because of startup
costs, a transfer with a relatively small total size achieves a lower
rate than does a larger transfer. A transfer with many �les incurs
more coordination overhead, and a dataset with many directories

Explaining Wide Area Data Transfer Performance HPDC’17, June 26-30, 2017, Washington, DC, USA

0 4 9 14 19 24 28 33 38 43 48 52 57 62 67 72 76 81 86 91
Total number of bytes transferred (GB)

0

1

2

3

4

5

6

7

8

9

A
v
e
ra

g
e
 r

a
te

 (
M

B
y
te

/s
)

4

Big files (top 50%) Small files (bottom 50%

Figure 5: File characteristics versus transfer performance.

may incur more overhead because of lock contention on parallel
�lesystems.

To study these e�ects, we choose one edge with many transfers,
namely, JLAB to NERSC. We �rst group transfers by total size
to form 20 groups. �en we determine the average �le size for
each transfer, and within each group we create two subgroups
comprising transfers with average �le size below and above the
median in each group, respectively.

Figure 5 shows our results. We observe that transfers with
smaller total size achieve a lower rate than do transfers with larger
total size. Within each total size bucket, transfers with higher aver-
age �le size achieve a higher rate than do those with lower average
�le size. Note that the average rates for “small �les” and “big �les”
transfers are not always directly comparable across di�erent total
size buckets, because a larger total size does not necessarily mean
a larger average �le size. For example, the average �le size of “big
�les” transfers in the “86 GB total bytes” bucket is less than for the
“big �les” transfers in the “72 GB total bytes” bucket. Similarly, the
reason for the small di�erence between the average rates for “big
�les” and “small �les” in the “91 GB total bytes” bucket is that the
average �le sizes in those two groups are similar.

Figure 6 presents a view of overall transfer characteristics across
all edges. Each transfer is plo�ed according to its transfer size and
estimated transfer distance (great circle distance between source
and destination, a lower bound), with color denoting the transfer
rate. We see again evidence of tremendous variety in transfer char-
acteristics, with transfer sizes ranging from 1 byte to close to a
petabyte and transfer rates from 0.1 bytes/second to a gigabyte/sec-
ond. Transfer rate clearly correlates somewhat with transfer size
and distance, as we would expect. Note the clear distinction be-
tween intracontinental and intercontinental transfers.

4.3 Load measurements
We saw in Figure 3 how transfer rate varies with what we de�ned
in §3.2 as relative external load. �is dependence re�ects the reality
that Globus data transfers occur in a shared resource environment.
Each transfer may contend with both other Globus transfers and
other non-Globus tasks that engage the same source and/or desti-
nation endpoint. We have information about the competing Globus
transfers from Globus logs; here we integrate domain knowledge

Figure 6: Transfer size vs. estimated transfer distance; color
encodes transfer rate.

of the GridFTP protocol and implementation with Globus log data
to de�ne features that we expect to in�uence transfer rate.

Table 2: Notation used in this article. We use the lower 15
terms as features in our models.

srck Source endpoint of transfer k.
dstk Destination endpoint of transfer k.
Tsk Start time of transfer k.
Tek End time of transfer k.
Rk Average transfer rate of transfer k.
N�t Number of faults a transfer experienced.
Ksin Contending incoming transfer rate on srck .
Ksout Contending outgoing transfer rate on srck .
Kdin Contending incoming transfer rate on dstk .
Kdout Contending outgoing transfer rate on dstk .
C Concurrency: Number of GridFTP processes.
P Parallelism: Number of TCP channels per process.
Ssin Number of incoming TCP streams on srck .
Ssout Number of outgoing TCP streams on srck .
Sdin Number of incoming TCP streams on dstk .
Sdout Number of outgoing TCP streams on dstk .
Gsrc GridFTP instance count on srck .
Gdst GridFTP instance count on dstk .
Nf Number of �les transferred.
Nd Number of directories transferred.
Nb Total number of bytes transferred.

4.3.1 Accounting for competing Globus transfers. �e perfor-
mance of a Globus transfer may be degraded by competing load

HPDC’17, June 26-30, 2017, Washington, DC, USA Zhengchun Liu, Prasanna Balaprakash, Rajkumar Ke�imuthu, and Ian Foster

Rk

Ssin

Ssout Sdout

Sdin

Gsrc Gdstsrck dstk

Ksout Kdout

KdinKsin

Figure 7: Load experienced by a Globus transfer k from end-
point srck to endpoint dstk with rate Rk , from other simul-
taneous Globus transfers: (a) GridFTP instances at source
and destination (Gsrc , Gdst); (b) outgoing and incoming TCP
streams at source and destination (Ssout , Ssin, Sdout , Sdin),
and (c) contending outgoing and incoming tra�c rates at
source and destination (Ksout , Ksin, Kdout , Kdin).

from other simultaneous Globus transfers that engage the same
source and/or destination endpoint. We know a lot about these
transfers from Globus logs; the question is how we should translate
this information into a small set of features. One obvious feature
is the aggregate data transfer rate of the competing transfers. A
second feature, given that network performance is o�en sensitive
to interactions among concurrent TCP connections, is the number
of TCP connections for the competing transfers. As mentioned
in §4.1, the total number of TCP connections for a transfer is the
product of its concurrency (C) and parallelism (P). For example, a
GridFTP transfer with C=4, P=4 and a transfer with C=16, P=1 both
involve 16 TCP connections. However, these two transfers involve
4 and 16 GridFTP server processes, respectively, and the la�er is
likely to result in more CPU load than does the former. �us, we
de�ne as a third feature the number of GridFTP server processes
associated with competing transfers.

Based on these considerations, we classify the load from such
competing Globus transfers in terms of their equivalent contending
transfer rate, GridFTP instance count, and parallel TCP streams.
Each quantity is an aggregate: in each case we sum over all com-
peting transfers. We refer to equivalent loads in each case because,
as we will see, we scale the load due to a competing transfer by the
fraction of the time that it overlaps with the transfer with which it
competes. Figure 7 illustrates these di�erent contending features
for a transfer k from source srck to destination dstk endpoints. As
described earlier, we perform a time series analysis to identify the
competing Globus transfers.

�e Globus contending transfer rate for a transfer k at its
source (srck) and destination (dstk) endpoints (see Figure 7) is

Kx ∈{sout,sin,dout,din}(k) =
∑
i ∈Ax

O(i,k)
Tek − Tsk

Ri , (2)

where Ax is the set of transfers (excluding k) with srck as source
when x=sout; srck as destination when x=sin; dstk as source when
x=dout; and dstk as destination when x=din. O(i,k) is the overlap
time for the two transfers:

O(i,k) = max (0, min(Tei , Tek) −max(Tsi , Tsk)) .

�e GridFTP instance count on transfer k’s source and des-
tination endpoints (Gsrc and Gdst , respectively) due to competing

transfers is represented as follows:

Gx ∈{src,dst }(k) =
∑
i ∈Ax

O(i,k)
Tek − Tsk

min(Ci , Fi),

where Ci is the user-speci�ed concurrency and Fi is the number of
�les transferred in the ith competing transfer, both from the Globus
log. �e set Ax contains all transfers except k that have srck as
their source or destination. �e min(Ci , Fi) is because a transfer
with Fi < Ci can use only Fi GridFTP instances.

�e number of simultaneous parallel TCP streams, S(k), of the
competing transfers in each data �ow direction is

Sx ∈{sout,sin,dout,din}(k) =
∑
i ∈Ax

O(i,k)
Tek − Tsk

min(Ci , Fi)Pi ,

where Pi is the user-speci�ed parallelism of transfer i . �e sets Ax
are as in Equation 2.

4.3.2 Accounting for other competing load. Figure 3 illustrates a
situation in which transfer rate varies fairly cleanly with external
load. We see that the highest transfer rate is always achieved when
relative external load (K) is zero, as we expect.

In other se�ings, things are more complicated. For example,
Figure 8 plots transfer rate versus relative external load for each
transfer between four edges involving endpoints with high-speed
networks and storage systems at the Texas Advanced Computing
Center (TACC), Argonne Leadership Computing Facility (ALCF),
National Energy Research Scienti�c Computing Center (NERSC:
two di�erent endpoints), San Diego Supercomputer Center (SDSC),
and Je�erson Laboratory (JLAB). Here, the relationship between
known external load and achieved transfer rate is less clear. In
fact, with the exception of the NERSC-DTN to the JLAB edge, the
maximum observed transfer rate (marked by a red star) is at a point
other than when the load from other Globus transfers is the lowest.

One likely reason for this discrepancy is competition from non-
Globus activities, such as �le transfers performed with other tools,
storage activities performed by other tasks, and other tra�c on
network link(s) between source and destination. We explore such
e�ects in §5.5.2, but in general we have no information that we
can use to quantify this other competing load. �us, we address the
limitation of missing information on non-Globus load by consid-
ering in our analyses only transfers that achieve a high fraction
of peak, under the hypothesis that these transfers are unlikely to
have su�ered from much other competing load. Speci�cally, for
each edge, E, we �rst determine the highest transfer rate achieved
between the two endpoints, Rmax (E), and then remove from our
dataset transfers that have a rate less than T.Rmax (E), where T is a
load threshold, set to 0.5 except where otherwise speci�ed.

�is approach is not ideal. It may also remove transfers that
perform badly because of, for example, transfer characteristics
(e.g., small �les). However, we show in §5.5 that the accuracy
of our models improves with load threshold. wide area network
conditions.

5 REGRESSION ANALYSIS
We use regression analysis to explain the relationship between the
transfer rate and the 15 independent variables in Table 2. In partic-
ular, we investigate whether the transfer rate can be modeled as a

Explaining Wide Area Data Transfer Performance HPDC’17, June 26-30, 2017, Washington, DC, USA

0.0 0.2 0.4 0.6 0.8 1.0
Relative external load

0

50

100

150

200

250

Tr
an

sf
er

 ra
te

 (M
B/

s)

max rate transfer

(a) TACC to ALCF

0.0 0.2 0.4 0.6 0.8 1.0
Relative external load

0

50

100

150

200

250

Tr
an

sf
er

 ra
te

 (M
B/

s)

max rate transfer

(b) TACC to NERSC-Edison

0.0 0.2 0.4 0.6 0.8 1.0
Relative external load

0

50

100

150

200

250

300

Tr
an

sf
er

 ra
te

 (M
B/

s)

max rate transfer

(c) SDSC to TACC

0.0 0.2 0.4 0.6 0.8 1.0
Relative external load

0

10

20

30

40

50

60

Tr
an

sf
er

 ra
te

 (M
B/

s)

max rate transfer

(d) NERSC-DTN to JLAB

Figure 8: Transfer rate vs. relative external load for four
edges, each involving heavily used endpoints.

linear and nonlinear combination of independent variables. To test
linear dependence, we use linear regression to �t the data. For the
nonlinear testing, there exists a wide range of supervised-machine-
learning algorithms of varying complexity. We use gradient boost-
ing [9], a state-of-the-art supervised-machine-learning algorithm
that has proven e�ective on many predictive modeling tasks.

Both methods bene�t from preprocessing since the scale of the
independent variables is quite di�erent. �erefore, we normalize
each input xi to have zero mean and unit variance, se�ing x ′ =
(xi − xi)/σi , where xi and σi are the mean and standard deviation
of xi , respectively.

5.1 Linear regression
Linear regression (LR) assumes that the relationship between the
rate Ri for each transfer i and the independent variables is linear:

Ri = β0 + β1xi1 + · · · + βmxim , (3)

where the xi j are them features for each of the n transfers i and
β0, · · · , βm are coe�cients that are estimated by minimizing the
residual sum of squares between the observed transfer rates (Ri) and
those predicted (R̂i) by the linear approximation. Mathematically,
we solve a problem of the form

min
β0, · · ·,βm

n∑
i=1

(
Ri − R̂i

)2
. (4)

We �t this linear regression model separately on each edge. We
use edges that have at least 300 transfers with rate greater than 0.5
Rmax . For each edge, we use these transfers to train and test the
model, since these transfers are less likely to have unknown (non-
Globus) competing load (detailed in §4.3.2) and thus are more likely
to explain the importance of each feature to transfer performance.
�ese transfers account for 46.5% of the raw data over these 30
heavily used edges. For each edge, we randomly select 70% of the
log data to train the model and the other 30% to test the model. Both
the training and test data, which include the derived and original
transfer features, are available online [27]. (�e data have been
anonymized to protect the privacy of endpoints and users.)

�ese 30 edges are representative of all edges in the log in im-
portant ways. To demonstrate this, we consider three edge char-
acteristics: edge length, which we approximate by determining the
great circle distance between source and destination and which
serves as a proxy for the round-trip time; maximum observed ag-
gregate transfer rate; and edge type, which is in turn determined
by its source and destination endpoint types. Table 3 compares
the distribution of great circle length for all edges versus for the
30 edges. For the maximum observed aggregate rate, the 30 edges
range from 6.4 MB/s (5th percentile) to 1.2 GB/s (95th percentile),
while all edges range from 2.1 MB/s (5th percentile) to 1.2 GB/s
(95th percentile). Table 4 compares the distribution of edge types.
[�ere are two endpoint types—server (Globus Connect Server, or
GCS) and personal computer (GCP)—and thus four edge types, of
which three are represented in the log. (Globus did not support
GCP to GCP transfers before 2016.)]

An advantage of the ��ed linear regression model is that it re-
veals the relationship between a single input variable and the trans-
fer rate when all other input variables in themodel are kept constant.
In particular, the interpretation of βi is the expected change in R

HPDC’17, June 26-30, 2017, Washington, DC, USA Zhengchun Liu, Prasanna Balaprakash, Rajkumar Ke�imuthu, and Ian Foster

Table 3: Edge length statistics (km) for three percentiles.

Dataset 25th 50th 90th
All edges 235 1,976 3,062
30 edges 247 1,436 3,947

Table 4: Edge type statistics (%).

Dataset GCS ⇒ GCS GCS ⇒ GCP GCS ⇒ GCP

All edges 45 34 20
30 edges 51 30 19

for a one-unit change in xi when no other input changes at the
same time. �is is called the unique e�ect of xi on R. Figure 9 shows
the relative values of the coe�cients. (We scaled the coe�cients
by dividing each coe�cient into the maximum value of its edge so
that all maximums have the same size). C and P are eliminated for
all edges because they do not vary greatly in the log data. Since
load on sout and din represent direct contention, we are not sur-
prised to see that they have considerable in�uence on transfer rate.
Although S{sin, sout, din, dout} and K{sin, sout, din, dout} all presumably
re�ect network load, they get di�erent weights in the model. �is
result tells us that no strong correlation exists between them, which
further argues that more TCP streams do not always contribute to
higher aggregate transfer rate. Gsrc and Gdst are also signi�cant
for most edges: more concurrent GridFTP processes mean more
contention on CPU, memory, and storage resources.

5.2 Nonlinear model
We conducted an exploratory analysis to check for nonlinear re-
lationships between rate and the independent variables. We com-
puted the Pearson linear correlation and nonlinear maximal infor-
mation coe�cients, as shown in Table 5. Several inputs have a
higher nonlinear maximal information coe�cient than the Pearson
correlation coe�cient, indicating nonlinear dependencies between
features and rate that cannot be captured by a linear model.

For the nonlinear model, we use a gradient boosting approach,
an iterative approach in which at each iteration a new decision
tree is added to correct errors made by previous trees. A gradient
descent algorithm is used to minimize the error when adding each
new tree. Sequentially built trees are combined to produce the
�nal model. An advantage of gradient boosting is that a�er the
trees are constructed, computing the importance scores for each
independent variable is straightforward. Intuitively, the more an
independent variable is used to make the main splits within the
tree, the higher its relative importance. �e importance for each
independent variable is then averaged across all the decision trees.
Note that unlike in the linear model, the importance score does not
correspond to the unit increase or decrease in rate.

We use eXtreme Gradient Boosting (XGB) [9], a high-performing
gradient boosting implementation that is used widely by data scien-
tists to achieve state-of-the-art results on many machine learning
challenges such as Kaggle and KDDCup. �e e�ectiveness of XGB
stems from several careful optimizations, both algorithmic (a novel
approximate tree learning algorithm and an e�cient procedure to

handle training point weights in approximate tree learning) and
system level (out-of-core computation to process data that is too
large to �t in main memory, and cache-aware learning to improve
speed and scalability) [9].

For each given edge, we use 70% of the data to train the XGB
model and the remaining 30% for testing.

5.3 Prediction results
Now, we compare the LR and XGB prediction errors. We �nd that
nonlinear regression improves over linear regression and that the
relationship between input variables and transfer rate is nonlinear.
Figures 10 and 11 show the prediction errors for each edge. We see
that XGB has lower errors than LR has for most edges, presumably
because it captures more information (nonlinear dependencies)
about the relationship between features and transfer rate.

Figure 12 shows the importance of features over each edge. Com-
paring with Figure 9, we see that most features have similar im-
portance across the linear and nonlinear models. Some features
(e.g., Ksout , Ssout , N b) are important in both. However, the num-
ber of faults, N�t , is a far less important feature in the nonlinear
case. We know that faults have a signi�cant negative impact on
performance, so why are they not important in the nonlinear case?
One possible reason is that faults occur when load is high, leading
to a correlation between faults and a nonlinear function of load.
�us, the nonlinear model can account for the impact of faults by
selecting an appropriate function of load.

5.4 A single model for all edges
�e success of our edge-speci�c regression analyses encourages
us to examine the feasibility of capturing endpoint di�erences in
additional features, in order to create a single general model for
all edges. Since we lack information about endpoint properties,
such as NIC capacity, CPU speed, core count, memory capacity,
and storage bandwidth, we use data from Globus logs to construct
two new features for each endpoint. Speci�cally, we de�ne for each
endpoint E its maximum outgoing rate, ROmaxE , as follows:

(1) Let srcE be all transfers with E as their source.
(2) For each transfer x in srcE , estimate its Globus contending

outgoing transfer rate (i.e., from its source endpoint) as
Ksout (x) from Equation 2.

(3) Determine the maximum outgoing rate for endpoint E:

ROmaxE = max
x ∈SrcE

(
Rx + K sout (x)

)
Similarly, we determine the endpoint’s maximum incoming rate,

RImaxE , also from Equation 2.

RImaxE = max
x ∈DstE

(
Rx + Kdin(x)

)
We can then extend Equation 3 to obtain the general model.

Ri = β0 + β1xi1 + · · · + βmxim + βm+1ROmaxsi +
βm+2RImaxdi

(5)

Here xij are as in Equation 3; si and di are the source and destination
endpoints for the transfer i; RImaxsi and ROmaxdi are our two
new features; and β0, · · · , βm+2 are the coe�cients. (Intuitively,
β0, · · · , βm capture the behavior of the Globus service and βm+1
and βm+2 the capabilities of the source and destination endpoints,

Explaining Wide Area Data Transfer Performance HPDC’17, June 26-30, 2017, Washington, DC, USA

K sout K din C P S sout S sin S dout S din K sin K dout Nd Nb Nflt G src G dst Nf

Feature

1
3
5
7
9

11
13
15
17
19
21
23
25
27
29

Ed
ge

Figure 9: Circle size indicates the relative signi�cance of features in the linearmodel, for each of 30 edges. A red cross indicates
that the corresponding feature is eliminated because of low variance. Features from di�erent samples are not comparable.

5 10 15 20 25 30
Edge

0

5

10

15

20

25

30

Re
la

tiv
e

er
ro

r (
%

)

Figure 10: Comparison of linear regression and eXtreme Gradient Boosting models. For each edge, the le� Violin plot gives
the prediction error of the linear regression model and the right the prediction error of eXtreme Gradient Boosting model.

respectively.) We then estimate β0, · · · , βm+2, as we did β0, · · · , βm
in §5.1 except that we perform the minimization over N transfers
associated with all of our 30 selected edges.

min
β0, · · ·,βm+2

N∑
i=1

(
Ri − R̂i

)2
. (6)

Speci�cally, we work with the transfers from the 30 edges with
rate greater than 0.5 Rmax . We use 70% of these 30,653 transfers
to train the linear model and the other 30% for testing. We obtain
an MdAPE of 19%: higher than when we train individual models
for each edge, but still useful for many purposes. For example, this
model can be used to predict transfer rates for an edge that has
few or no transfers, if that edge’s source and destination endpoints

have been involved in transfers to other endpoints. We also train
the nonlinear model XGB and obtain an MdAPE of 4.9%. In future
work, we will incorporate round-trip times for each edge, which
we expect to reduce errors further.

5.5 Reducing or eliminating the unknowns
�e unknown aspects that impact the transfer rate contribute to
the inaccuracies in the models developed so far. Here we try to
reduce or eliminate the unknowns and see how doing so can help
improve the accuracy of the models.

5.5.1 Reducing the unknowns. As discussed in §4.3.2, the results
reported here are for transfers with rate ≥ 0.5Rmax , under the hy-
pothesis that such transfers are less likely to su�er from competing

HPDC’17, June 26-30, 2017, Washington, DC, USA Zhengchun Liu, Prasanna Balaprakash, Rajkumar Ke�imuthu, and Ian Foster

Table 5: Correlation study between the features of Table 2 and transfer rate. CC is the Pearson correlation coe�cient and MIC
the maximal information coe�cient. Missing data in CC rows (–) mean that the corresponding features have uniform value.

ID Ksout Kdin C P Ssout Ssin Sdout Sdin Ksin Kdout Nd Nb Gsrc Gdst Nf

CC 0.23 0.41 – – 0.20 0.16 0.51 0.46 0.16 0.40 0.12 0.12 0.11 0.56 0.13
MIC 0.25 0.66 0.00 0.00 0.30 0.06 0.52 0.63 0.06 0.66 0.17 0.39 0.28 0.66 0.19
CC 0.17 0.10 – – 0.06 0.11 0.21 0.16 0.09 0.21 0.20 0.32 0.19 0.01 0.20
MIC 0.47 0.33 0.00 0.00 0.48 0.23 0.18 0.45 0.23 0.18 0.13 0.49 0.46 0.49 0.13
CC 0.02 0.03 / / 0.01 / 0.18 0.03 / 0.11 0.11 0.22 0.11 0.06 0.11
MIC 0.16 0.24 0.00 0.00 0.19 0.00 0.18 0.26 0.00 0.18 0.20 0.41 0.20 0.28 0.20
CC 0.03 0.24 / / 0.01 0.12 / 0.02 0.14 / 0.03 0.43 0.09 0.02 0.04
MIC 0.26 0.17 0.00 0.00 0.24 0.26 0.00 0.29 0.29 0.00 0.06 0.53 0.26 0.18 0.40

0 5 10 15 20 25
Edge

0

2

4

6

8

10

12

14

M
dA

PE
 (%

)

27
71

41
2

34
59

27
9

12
10

51
3

35
0

89
4

57
4

38
8 64

1
37

0
37

8 57
0 48

8
37

66 11
08

63
3

15
95

41
94

31
0 36

9
42

0
91

9 81
1

45
6

11
05

33
3

38
8

91
5

Linear regression eXtreme Gradient Boosting

Figure 11: MdAPEs for linear and and eXtreme Gradient
Boosting models, and the actual number of samples used.

load. To explore whether transfers with higher rates are more likely
to have less unknown load, we also applied the eXtreme Gradient
Boosting method to datasets obtained by se�ing the threshold as
0.6Rmax , 0.7Rmax , and 0.8Rmax . Figure 13 shows the prediction
errors for all four models for the eight edges that have more than
300 transfers that satisfy the 0.8Rmax threshold. Prediction errors
generally decline as the threshold increases, as we expect.

5.5.2 Eliminating the unknowns. An alternative way to reduce
the impact of unknown load on model results is to collect more in-
formation about the endpoint and possibly the network. To explore
the utility of this approach, we performed test transfers over end-
points for which we could monitor all load (including that external
to Globus) on storage. We added this new storage load information
to the feature set, used the new feature set to train a data-driven
model, and evaluated the prediction accuracy of this new model.

We performed these experiments in an environment comprising
two Lustre �le systems at NERSC: one shared with the Edison
supercomputer and one with a DTN. We used Globus to perform a
series of test transfers from one Lustre object storage target (OST) to
another, keeping 10 additional simultaneous Globus load transfers
running at all times in order to mimic a production environment.
�roughout the experiments, we used the Lustre Monitoring Tool
(LMT) to collect, every �ve seconds, both disk I/O load for each
Lustre OST andCPU load for each Lustre object storage server (OSS).

We performed 666 test transfers in total, of which we randomly
picked 70% for training and the rest for testing.

To provide a baseline for evaluation of the utility of the LMT-
measured data, we �rst trained the model described in §5.2 with the
same features used in earlier sections, namely, the lower 15 terms
in Table 2. �e 95th percentile error is 9.29%. �is error is lower
than that seen in §5.1 and §5.2, which we a�ribute to the fact that
the source and destination are at the same site.

We then introduced four new features to represent storage load:
CPU load on source OSS, CPU load on destination OSS, disk read
on source OST, and disk write on destination OST. With these new
features, a nonlinear model of the type described in §5.2 achieved a
95th percentile error of just 1.26%.

�ese results suggest that if we can characterize all currently
unknown loads, we can build an accurate model for transfer rate.
We note, however, that the environment in which we performed
this study di�ers from production environments in important re-
spects. In particular, our transfer characteristics were uniform for
all transfers (i.e., Nb , Nf , and Ndir are the same across all transfers),
and since we transferred data only internally at NERSC, we did not
have to deal with the challenging issue of network contention.

6 RELATEDWORK
Models have been developed for individual components in the end-
to-end �le transfer, including TCP based on �rst principles [13, 31,
34], and storage systems [7, 26, 39, 40]. In other work [19], we
used models for the individual system components involved in an
end-to-end data transfer and optimized the data transfer using the
models. But such modeling is challenging because it requires a lot
of information for each individual endpoint.

Parallel TCP streams are extensively used in wide-area data
transfers to increase the aggregate TCP window size and provide
increased resilience to packet losses [15, 29]. Several researchers
have modeled the behavior of parallel TCP streams [3, 10, 15, 24,
29], and some studies [18, 30, 41] have focused on such streams
speci�cally in the context of GridFTP. In our work here, we model
the end-to-end performance characteristics of �le transfers, where
the parallel TCP stream is one of many aspects that impact the
performance. In addition to parallel streams, we take into account
several other features that impact the transfer rate, including dataset
characteristics and load on the transfer hosts, storage, and network.

Explaining Wide Area Data Transfer Performance HPDC’17, June 26-30, 2017, Washington, DC, USA

K sout K din C P S sout S sin S dout S din K sin K dout Nd Nb Nflt G src G dst Nf

Feature

1
3
5
7
9

11
13
15
17
19
21
23
25
27
29

Ed
ge

Figure 12: Circle size indicates the relative importance of features in the eXtremeGradient Boostingmodel, for each of 30 edges.
A red cross indicates a feature that is eliminated due to low variance. Features from di�erent samples are not comparable.

1 2 3 4 5 6 7 8
Edge

0

1

2

3

4

5

6

7

8

M
dA

PE
 (%

)

41
6

39
0

36
5

31
1

11
06

71
2

52
1

32
7

45
6

45
3

44
5

37
7

68
5

68
3

66
2

57
3 34

50
28

83
22

31
19

86

22
60

22
08

18
48

13
34

41
94

36
31

25
26

44
7

14
87

13
36

87
2

61
5

0.5R edge
max 0.6R edge

max 0.7R edge
max 0.8R edge

max

Figure 13: MdAPEs for the linear model on eight edges,
when training on sets of transfers with di�erent Rmax

thresholds. We show the number of data points in each case.

Other prior work has sought to develop end-to-end �le transfer
models [4, 21, 22, 28, 35]. Vazhkudai and Schopf [35] and Lu et
al. [28] propose models that rely on performance data on individ-
ual components such as network, disk, and application. Kim et
al. [22] and Arslan et al. [4] rely on real-time probing. Although
Ke�imuthu et al. [21] consider external load in their model, neither
they nor other studies examined the impact of the external load as
extensively as has been done in this paper.

7 RELEVANCE TO OTHER TOOLS
While we performed this work using Globus data, we believe that
our methods and conclusions are applicable to all wide area data

transfers. �e features that we used (number of TCP connections,
number of network and disk I/O threads / processes, size of the data
transfer, number of �les, competing load) are generic features that
impact the performance of any wide area data transfer, irrespective
of the tool employed. Features such as number of TCP connections,
number of network and disk I/O threads / processes, size of the data
transfer, and number of �les can be obtained in a straightforward
fashion for other data transfer tools such as FTP, rsync, scp, bbcp [6],
FDT [12], and XDD [32]. Given these features, our method can
be used to compute competing load for an environment in which
one of those other tools dominates. In fact, if the logs for all data
transfer tools are available, our method can be used to compute
the competing load from all tools, which we can expect to uncover
more unknowns and thus improve model accuracy.

8 CONCLUSIONS
We have used a large collection of Globus transfer records to gain
insight into the behavior of large science data transfers and the
factors that a�ect their behavior. We generate various features
from Globus logs and study the importance of these features in
models. For 30,653 transfers over 30 heavily used source-destination
pairs (“edges”), totaling 2,053 TB in 46.6 million �les, we obtained
median absolute percentage prediction errors (MdAPE) of 7.0% and
4.6% when using distinct linear and nonlinear models per edge,
respectively. When using a single nonlinear model for all 30 edges,
we obtain an MdAPE of 7.8%. We are currently applying these
models to other Globus transfers.

Although we have focused on Globus transfers, we expect our
approach and proposed features to have broad applicability for

HPDC’17, June 26-30, 2017, Washington, DC, USA Zhengchun Liu, Prasanna Balaprakash, Rajkumar Ke�imuthu, and Ian Foster

wide area �le transfers that involve parallel TCP streams. In par-
ticular, our feature engineering work provides useful hints and
insights for data science practitioners in wide area data transfer.
We demonstrate, for example, the importance of creating measures
of endpoint load to capture the impact of contention for computer,
network interface, and storage system resources. One implication
is that contention at endpoints can signi�cantly reduce aggregate
performance of even overprovisioned networks. �is result sug-
gests that aggregate performance can be improved by scheduling
transfers and/or reducing concurrency and parallelism.

We have identi�ed several directions for improved transfer ser-
vice monitoring that we hope can improve our models by improving
knowledge of other loads. Globus currently records information
only about its transfers: it collects no information about non-Globus
load on endpoints or about network load. A new version with the
ability to monitor overall endpoint status is under development.
Further research is needed to study the in�uence of network load.
To this end, we plan to incorporate SNMP data from routers to char-
acterize network conditions. Another direction for future work is to
see whether more advanced machine learning methods, for exam-
ple multiobjective modeling with machine learning (AutoMOMML)
[5], can yield be�er models.

ACKNOWLEDGMENTS
�is material was supported in part by the U.S. Department of
Energy, O�ce of Science, Advanced Scienti�c Computing Research,
under Contract DE-AC02-06CH11357. We thank Nagi Rao for useful
discussions, Brigi�e Raumann for help with Globus log analysis,
Glenn Lockwood for help with experiments at NERSC described in
§5.5, and the Globus team for much good work and advice.

REFERENCES
[1] W. Allcock, J. Bresnahan, R. Ke�imuthu, M. Link, C. Dumitrescu, I. Raicu, and

I. Foster. �e Globus striped GridFTP framework and server. In SC’05, pages
54–61, 2005.

[2] B. Allen, J. Bresnahan, L. Childers, I. Foster, G. Kandaswamy, R. Ke�imuthu,
J. Kordas, M. Link, S. Martin, K. Picke�, and S. Tuecke. So�ware as a service for
data scientists. Commun. ACM, 55(2):81–88, Feb. 2012.

[3] E. Altman, D. Barman, B. Tu�n, and M. Vojnovic. Parallel TCP sockets: Sim-
ple model, throughput and validation. In 25th IEEE Intl Conf. on Computer
Communications, pages 1–12, April 2006.

[4] E. Arslan, K. Guner, and T. Kosar. HARP: predictive transfer optimization based
on historical analysis and real-time probing. In SC’16, pages 25:1–25:12, 2016.

[5] P. Balaprakash, A. Tiwari, S. M. Wild, and P. D. Hovland. AutoMOMML: Auto-
matic Multi-objective Modeling with Machine Learning. In ISC, pages 219–239,
2016.

[6] BBCP. h�p://www.slac.stanford.edu/∼abh/bbcp/.
[7] P. H. Carns, B. W. Se�lemyer, and W. B. Ligon III. Using server-to-server commu-

nication in parallel �le systems to simplify consistency and improve performance.
In SC’08, page 6, 2008.

[8] K. Chard, S. Tuecke, and I. Foster. Globus: Recent enhancements and future
plans. In XSEDE’16, page 27. ACM, 2016.

[9] T. Chen and C. Guestrin. XGBoost: A scalable tree boosting system. arXiv
preprint arXiv:1603.02754, 2016.

[10] J. Crowcro� and P. Oechslin. Di�erentiated end-to-end internet services using
a weighted proportional fair sharing TCP. SIGCOMM Comput. Commun. Rev.,
28(3):53–69, July 1998.

[11] E. Dart, L. Rotman, B. Tierney, M. Hester, and J. Zurawski. �e Science DMZ:
A network design pa�ern for data-intensive science. Scienti�c Programming,
22(2):173–185, 2014.

[12] FDT. FDT - Fast Data Transfer. h�p://monalisa.cern.ch/FDT/.
[13] J. Gao and N. S. V. Rao. TCP AIMD dynamics over Internet connections. IEEE

Communications Le�ers, 9:4–6, 2005.
[14] I. Guyon and A. Elissee�. An introduction to variable and feature selection. J.

Mach. Learn. Res., 3:1157–1182, Mar. 2003.

[15] T. J. Hacker, B. D. Athey, and B. Noble. �e end-to-end performance e�ects
of parallel TCP sockets on a lossy wide-area network. In 16th Intl Parallel and
Distributed Processing Symp., page 314, 2002.

[16] A. Hanemann, J. W. Boote, E. L. Boyd, J. Durand, L. Kudarimoti, R. Lapacz, D. M.
Swany, S. Trocha, and J. Zurawski. PerfSONAR: A service oriented architecture
for multi-domain network monitoring. In 3rd Intl Conf. on Service-Oriented
Computing, pages 241–254, Berlin, Heidelberg, 2005. Springer-Verlag.

[17] iperf3. h�p://so�ware.es.net/iperf/.
[18] T. Ito, H. Ohsaki, and M. Imase. GridFTP-APT: Automatic parallelism tuning

mechanism for data transfer protocol GridFTP. In 6th IEEE Intl Symp. on Cluster
Computing and the Grid, pages 454–461, 2006.

[19] E.-S. Jung, R. Ke�imuthu, and V. Vishwanath. Toward optimizing disk-to-disk
transfer on 100G networks. In 7th IEEE Intl Conf. on Advanced Networks and
Telecommunications Systems, 2013.

[20] T. Kelly. Scalable TCP: Improving performance in highspeed wide area networks.
ACM SIGCOMM Computer Communication Review, 33(2):83–91, 2003.

[21] R. Ke�imuthu, G. Vardoyan, G. Agrawal, and P. Sadayappan. Modeling and
optimizing large-scale wide-area data transfers. 14th IEEE/ACM Intl Symp. on
Cluster, Cloud and Grid Computing, 0:196–205, 2014.

[22] J. Kim, E. Yildirim, and T. Kosar. A highly-accurate and low-overhead prediction
model for transfer throughput optimization. Cluster Computing, 18(1):41–59,
2015.

[23] E. Kissel, M. Swany, B. Tierney, and E. Pouyoul. E�cient wide area data transfer
protocols for 100 Gbps networks and beyond. In 3rd Intl Workshop on Network-
Aware Data Management, page 3. ACM, 2013.

[24] G. Kola and M. K. Vernon. Target bandwidth sharing using endhost measures.
Perform. Eval., 64(9-12):948–964, Oct. 2007.

[25] T. Kosar, G. Kola, and M. Livny. Data pipelines: Enabling large scale multi-
protocol data transfers. In 2nd Workshop on Middleware for Grid Computing,
pages 63–68, 2004.

[26] N. Liu, C. Carothers, J. Cope, P. Carns, R. Ross, A. Crume, and C. Maltzahn.
Modeling a leadership-scale storage system. In Parallel Processing and Applied
Mathematics, pages 10–19. 2012.

[27] Z. Liu, P. Balaprakash, R. Ke�imuthu, and I. Foster. Explaining wide area data
transfer performance. h�p://hdl.handle.net/11466/globus A4N55BB, 2017.

[28] D. Lu, Y. Qiao, P. Dinda, and F. Bustamante. Characterizing and predicting TCP
throughput on the wide area network. In 25th IEEE Intl Conf. on Distributed
Computing Systems, pages 414–424, June 2005.

[29] D. Lu, Y. Qiao, P. A. Dinda, and F. E. Bustamante. Modeling and taming parallel
TCP on the wide area network. In 19th IEEE Intl Parallel and Distributed Processing
Symp., page 68b, 2005.

[30] H. Ohsaki and M. Imase. On modeling GridFTP using �uid-�ow approximation
for high speed Grid networking. In Symp. on Applications and the Internet–
Workshops, pages 638–, 2004.

[31] J. Padhye, V. Firoiu, D. F. Towsley, and J. F. Kurose. Modeling TCP Reno perfor-
mance: A simple model and its empirical validation. IEEE/ACMTrans. Networking,
8(2):133–145, 2000.

[32] B. W. Se�lemyer, J. D. Dobson, S. W. Hodson, J. A. Kuehn, S. W. Poole, and T. M.
Ruwart. A technique for moving large data sets over high-performance long
distance networks. In 27th Symp. on Mass Storage Systems and Technologies,
pages 1–6, May 2011.

[33] B. Tierney, W. Johnston, B. Crowley, G. Hoo, C. Brooks, and D. Gunter. �e
NetLogger methodology for high performance distributed systems performance
analysis. In 7th Intl Symp. on High Performance Distributed Computing, pages
260–267, 1998.

[34] G. Vardoyan, N. S. V. Rao, and D. Towsley. Models of TCP in high-BDP environ-
ments and their experimental validation. In 24th Intl Conf. on Network Protocols,
pages 1–10, 2016.

[35] S. Vazhkudai and J. Schopf. Using regression techniques to predict large data
transfers. Int. J. High Perf. Comp. Appl., 2003.

[36] D. X. Wei, C. Jin, S. H. Low, and S. Hegde. FAST TCP: Motivation, architecture,
algorithms, performance. IEEE/ACM Trans. Networking, 14(6):1246–1259, 2006.

[37] W. Weibull. A statistical distribution function of wide applicability. Journal of
Applied Mechanics, pages 293–297, 1951.

[38] R. Wolski. Forecasting network performance to support dynamic scheduling
using the Network Weather Service. In 6th IEEE Symp. on High Performance
Distributed Computing, 1997.

[39] J. M. Wozniak, S. W. Son, and R. Ross. Distributed object storage rebuild analysis
via simulation with GOBS. In Intl Conf. on Dependable Systems and Networks
Workshops, pages 23–28, 2010.

[40] Q. M. Wu, K. Xie, M. F. Zhu, L. M. Xiao, and L. Ruan. DMFSsim: A distributed
metadata �le system simulator. Applied Mechanics and Materials, 241:1556–1561,
2013.

[41] E. Yildirim, D. Yin, and T. Kosar. Prediction of optimal parallelism level in wide
area data transfers. IEEE Trans. Parallel Distrib. Syst., 22(12):2033–2045, Dec.
2011.

http://www.slac.stanford.edu/~abh/bbcp/
http://monalisa.cern.ch/FDT/
http://software.es.net/iperf/
http://hdl.handle.net/11466/globus_A4N55BB

	Abstract
	1 Introduction
	2 Background on the Globus service
	3 A simple analytical model
	3.1 Maximum achievable transfer rate
	3.2 Extending the model to other endpoints

	4 Transfer features
	4.1 Tunable parameters
	4.2 Transfer characteristics
	4.3 Load measurements

	5 Regression analysis
	5.1 Linear regression
	5.2 Nonlinear model
	5.3 Prediction results
	5.4 A single model for all edges
	5.5 Reducing or eliminating the unknowns

	6 Related work
	7 Relevance to other tools
	8 Conclusions
	References

